Bayesian Sparse Estimation Using Double Lomax Priors
نویسندگان
چکیده
منابع مشابه
Sparse Estimation Using General Likelihoods and Non-Factorial Priors
Finding maximally sparse representations from overcomplete feature dictionaries frequently involves minimizing a cost function composed of a likelihood (or data fit) term and a prior (or penalty function) that favors sparsity. While typically the prior is factorial, here we examine non-factorial alternatives that have a number of desirable properties relevant to sparse estimation and are easily...
متن کاملBayesian Subspace Estimation Using Sparse Promoting Prior
Hyperspectral sensors record the light intensity beyond the visible spectra in hundreds of narrow contiguous bands. Images are characterized by a high spectral resolution but a low spatial precision due to sensors constraints. A crucial step called unmixing consists of decomposing each pixel as a combination of pure spectra, called endmembers. Endmembers act as fingerprints, improving the abili...
متن کاملGroup Sparse Priors for Covariance Estimation
Motivation: Estimating a covariance matrix from high dimensional data using a small number of samples is known to be statistically challenging, and yet it is a problem that arises frequently in practice. For some kinds of data, it is reasonable to assume that the variables can be clustered or grouped into types that share similar connectivity or correlation patterns. For example, genes can be g...
متن کاملBayesian wavelet-based image estimation using noninformative priors
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ computationally expensive adaptive procedures. We overcome these de ciencies with a new wavelet-based denoising technique derived from a simple empirical Bayes approach ba...
متن کاملBayesian estimation of incomplete data using conditionally specified priors
In this paper, a class of conjugate prior for estimating incomplete count data based on a broad class of conjugate prior distributions is presented. The new class of prior distributions arises from a conditional perspective, making use of the conditional specification methodology and can be considered as the generalisation of the form of prior distributions that have been used previously in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2013
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2013/176249